Pharmacology Of Chloroquine

Indication For the suppressive treatment and for acute attacks of malaria due to P. vivax, P.malariae, P. ovale, and susceptible strains of P. falciparum, Second-line agent in treatment of Rheumatoid Arthritis
Pharmacodynamics Chloroquine is the prototype anti malarial drug, most widely used to treat all types of malaria except for disease caused by chloroquine resistant Plasmodium falciparum. It is highly effective against erythrocytic forms of Plasmodium vivax, Plasmodium ovale and Plasmodium malariae, sensitive strains of Plasmodium falciparum and gametocytes of Plasmodium vivax. Being alkaline, the drug reaches high concentration within the food vacuoles of the parasite and raises its pH. It is found to induce rapid clumping of the pigment. Chloroquine inhibits the parasitic enzyme heme polymerase that converts the toxic heme into non-toxic hemazoin, thereby resulting in the accumulation of toxic heme within the parasite. It may also interfere with the biosynthesis of nucleic acids.
Mechanism of action The mechanism of plasmodicidal action of chloroquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. nside red blood cells, the malarial parasite must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasite cell. During this process, the parasite produces the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals. Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-Chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. In essence, the parasite cell drowns in its own metabolic products.
Absorption Completely absorbed from gastrointestinal tract
Volume of distribution Not Available
Protein binding ~55% of the drug in the plasma is bound to nondiffusible plasma constituents
Metabolism Hepatic (partially)
Route of elimination Excretion of chloroquine is quite slow, but is increased by acidification of the urine.
Half life 1-2 months
Clearance Not Available
Toxicity Not Available

Comments